

FSM BASED RE-TESTING METHODS

Khaled El-Fakih+, Nina Yevtushenko++ and Gregor v. Bochmann+++
+Department of Computer Science, American University of Sharjah, UAE, kelfakih@aus.ac.ae
++Tomsk State University, 36 Lenin Str., Tomsk, 634050, Russia, yevtushenko.rff@elefot.tsu.ru
+++ School of Information Technology and Engineering, University of Ottawa, Canada,
bochmann@site.uottawa.ca

Abstract The selection of appropriate test cases is an important issue in software
engineering. A number of methods are known for the selection of a test suite
based on the specification and an implementation under test given in the form
of a finite state machine (FSM). In realistic applications, this specification
evolves incrementally throughout incorporating frequent modifications. In this
paper, we adapt three well-known test derivation methods, namely the W, Wp,
and HIS methods, for generating tests that would test the modified parts of the
evolving specification. Application examples are provided.

Keywords: Conformance testing, finite state machines, test derivation, re-testing

1. INTRODUCTION

Many methods have been developed for deriving tests for a system
represented by a Finite State Machine (FSM) model. The purpose of these
tests is to determine whether an implementation of the system conforms to
(i.e., is correct with respect to) its specification. Usually a conforming
implementation is required to have the same I/O behavior.

In realistic applications, maintaining a system modeled by a given
specification machine involves modifying its specification as a result of
changes in the users’ requirements and designers implement incrementally
these modifications. Testing the whole system implementation after each
modification is considered expensive and time consuming. Therefore, it is
important to generate tests (called re-tests) that would only test the modified

parts of the implementation that correspond to the modified parts of its
specification. This would reduce the maintenance cost of such a system,
which is about two-thirds of the cost of the software production [10].

In this paper, we present test generation methods (called henceforth as re-
testing methods) that select tests (called re-tests) for testing the modified
parts of the system specification, in order to check that these modifications
were correctly implemented in the system implementation. Here we assume
that the parts of the system implementation that correspond to the
unmodified parts of the system specification are left intact. Moreover, we
also reasonably assume that before modifying the system specification, its
implementation was tested and found conforming to this specification. These
methods are based on well-known test derivation methods called the W[1],
Wp [3], and HIS [8] methods.

The problem of deriving re-testing sequences can be converted into the
problem of test derivation from an FSM with a fault function [7] or from its
generalization [5]. In this case, potential implementations are represented as
all complete sub-machines of a given nondeterministic FSM that is called a
mutation machine. However, the mutation machine from which re-testing
sequences are derived, is special. Each unmodified specification transition is
a deterministic transition of the mutation machine while each modified
transition becomes chaotic; each pair (state, output) becomes possible as its
tail state and output in a potential implementation. In other words, on one
hand, the mutation machine has a number of deterministic transitions that
can be used deriving a test suite, while on the other hand, a number of all
possible paths that include modified transitions becomes exponential. Based
on these features, we propose a proper technique for test derivation. First, we
do not explicitly enumerate all possible implementation paths under an
appropriate input sequence and secondly, we essentially use unmodified
specification transitions that still remain deterministic in the mutation FSM.
However, we always mention when our method delivers the same test suite
as the methods for test derivation from an arbitrary mutation machine
proposed in [7], [5].

This paper is organized as follows. Section 2, describes the finite state
machine model, and Section 3 briefly describes the W, Wp, and HIS
methods for generating tests from a given FSM specification. Based on these
methods, our re-testing methods are presented in Section 4 with appropriate
application examples. Section 5 concludes the paper.

2. FINITE STATE MACHINES

A deterministic finite state machine is a 7-tuple M = (S, X, Y, δ,

λ, DM, s1), where: S is a finite set of states, s1 is the initial state, X is a finite
set of input symbols, Y is a finite set of output symbols, δ is a next state (or
transition) function:δ: DM --> S, λ is an output function: λ: DM --> Y, and
DM is a specification domain: DM ⊆ S ×X.

We use as in [3] the notation “(si -x/y-> sj)” to indicate that the FSM M at
state si responds with an output y and makes the transition to the state sj
when the input x is applied. State si is said to be the head or starting state of
the transition, while sj is said to be the tail or ending state of the transition. If
we are not interested in the output we write “si-v->sj” when an input
sequence v is applied at state si. FSM M is said to be completely specified or
simply a complete FSM, if DM = S × X; otherwise, M is said to be partially
specified or simply a partial FSM. In the complete FSM, we omit the
specification domain DM, i.e. a complete FSM is a 6-tuple M = (S, X, Y, δ,
λ, s1). The concatenation of sequences v1 and v2 is the sequence v1.v2. For
a given alphabet Z, Z* is used to denote the set of all finite words over Z. Let
V be a set of words over alphabet Ζ. The prefix closure of V, written Pref(V),
consists of all the prefixes of each word in V, i.e. Pref(V) = {α | ∃ γ (α.γ ∈
V)}. The set V is prefix-closed if Pref(V) = V.

Let MS =(S, X, Y, δS, λS, DS, s1) and MI = (T, X, Y, ∆I, ΛI, DI, t1) be two
FSMs. In the following sections MS usually represents a protocol
specification while MI denotes an implementation, and thus, FSM MI is
further assumed to be complete. Given an input sequence α = x1 x2 .. xk ∈
X*, α is called a defined input sequence(DIS) at state si ∈ S, if there exist k
states si1, si2, ..., sik ∈ S such that there is a sequence of specified transitions
si- x1-> si1 --> ... --> si(k-1)- xk-> sik in the finite state machine MS.
Hereafter, DIS(MS|si) will be used to denote the set of all the defined input
sequences at state si of machine MS.

We say that states si of MS and tj of MI are compatible if DIS(MS|si) ∩
DIS(MI|tj)=∅ or if ∀ α ∈ DIS(MS|si) ∩ DIS(MI|tj) it holds that λS(si, α) =
ΛI(tj, α). Otherwise; we say that states si and sj are distinguishable. Input
sequence α ∈ DIS(MS|si) ∩ DIS(MI|tj) such that λS(si, α) ≠ ΛI(tj, α) is said
to distinguish the states si and tj. An FSM is said to be reduced if its states
are pair-wise distinguishable. If the FSMs happen to be complete, then the
definition of compatible states reduces to the definition of equivalent states
(see for example, [4]).

3. REVIEW OF THE W, WP, AND HIS METHODS

In the following section we briefly describe test derivation methods
where the specification is given as a reduced FSM MS while an
implementation under test (IUT) is modeled by a complete FSM MI.

Let ti be a state of MI and sj be a state of MS. Consider set V of input
sequences such that V ⊆ DIS(MS|sj). State ti is said to be equivalent to sj
with respect to the set V (written as ti ≅V sj), if ΛI(ti, α) = λS(sj, α) holds
for any α ∈ V. In other words, for each input sequence of V, a behavior of
MI at state ti coincides with that of MS at state sj.

We say that MI conforms to MS if and only if t1 ≅DIS(MS|s1) s1, where t1
and s1 are the initial states of MI and MS, respectively. In other words, for
each input sequence where a behavior of MS is defined, MI has the same
behavior, i.e. the implementation is quasi-equivalent to the specification [4].
This conformance relation corresponds to the notion of weak conformance
[9].

A set Q of input sequences is called a state cover set of FSM MS if for
each state si of S, there is an input sequence αi∈ Q such that s1-αi->si.

Usually the testing methods reviewed in this section use state
identification facilities in order to check that each state and each transition
defined in the specification also exists in the implementation. These facilities
have certain input/output behaviors that can distinguish the states of an FSM.
Given a reduced FSM MS and a state si ∈ S, a set Wi ⊆ DIS(MS|si) of
defined input sequences at state si is called a state identifier of state si if for
any other state sj there exists α ∈ Wi ∩ DIS(MS|sj) such that λS(si, α) ≠
λS(sj, α). We now define a collection of state identifiers that has been
named a family of harmonized identifiers [6], [8] or a separating family [11].
A separating family is a collection of state identifiers Wi, si∈S, which satisfy
the condition that for any two states si, and sj, i ≠ j, there exist β ∈ Wi and γ
∈ Wj which have common prefix α such that α ∈ DIS(MS|si) ∩ DIS(MS|sj),
and λS(si, α) ≠ λS(sj, α). A separating family exists for any reduced (partial
or complete) machine.

A characterization set of the FSM MS, often simply called a W set, is a
set of input sequences which satisfies the following conditions:

(1) For any sk ∈ S, W ⊆ DIS(MS|sk),
(2) For any two states si, and sj, i ≠ j, there exists β ∈ W such that

λS(si, β) ≠ λS(sj, β).
A W set always exists for a reduced completely specified machine.

However, the W set does not always exist for a reduced partially specified
machine.

Given a specification reduced FSM MS = (S, X, Y, δS, λS, DS, s1), |S|=n,
and a complete implementation FSM MI = (T, X, Y, ∆I, ΛI, t1) such that
|T|=n, let W be a characterization set of MS (if exists) and F = {W1,…, Wn}
be a separating family of MS.

All the methods have two phases. In the first so-called state identification
phase, they establish a one-to-one mapping hS-I: S → T by the use of a
characterization set W or a separating family F. Given a prefix-closed state

cover set Q = {α1, α2,…, αn} of the specification FSM, for each state sj ∈ S,
the state identification phase comprises the sequences: r.αj.Wj (HIS method)
or r.αj.W (W and Wp methods).

We note that, if the specification FSM MS is partial, a characterization set
W may not exist; in this case, the W and Wp methods cannot be applied.
However, the HIS method can be applied.

If FSM MI passes the state identification test sequences, then there exists
one-to-one mapping hS-I: S → T such that: h(sj) = t ⇔ sj ≅ Wj t in the HIS
method, and h(sj) = t ⇔ sj ≅ W t in the W and Wp methods.

The second so-called transition testing phase, assures that for each state
s∈S, and input x∈X that is defined at state s the mapping hS-I satisfies the
following property:

λS(s, x) = ΛI(hS-I(s), x) and hS-I(δS(s, x)) = ∆I(hS-I(s), x) (X-1)
For this purpose, for each sequence αj ∈ Q that takes the specification

FSM to appropriate state sj, and each x∈X that takes the MS from state sj to
state sk, the testing transition phase includes the set of sequences:

r.αj.x.Wk in the HIS and Wp methods, where Wk is a state identifier
of the state sk in the specification FSM (for the Wp method, we have
Wk ⊆W) or
r.αj.x.W in the W method

 If FSM MI passes the test sequences of both testing phases, then it is
quasi-equivalent to the specification FSM, i.e. is a conforming
implementation. If the specification FSM is complete then the quasi-
equivalence relation reduces to the equivalence relation, i.e. the specification
FSM and its conforming implementation have the same Input/Output
behavior.

4. FSM BASED RE-TESTING

4.1 Problem Definition
Let the reduced FSM MS = (S, X, Y, δS, λS, DS, s1) be the specification

of a given system. We assume that the complete implementation FSM
MI = (T, X, Y, ∆I, ΛI, t1) of MS with the same number of states has been
tested and found conforming to MS. Therefore, there exists a one-to-one
mapping hS-I: S → T such that for each state s∈S and input x∈X that is
defined at state s, (X-1) holds.

 Let the reduced MS' = (S, X, Y, δS, λS, DS', s1) be the modified
specification, and MI'=(T, X, Y, ∆I, ΛI, t1) be the modified implementation
that must conform to MS'. We assume that only transitions corresponding to
the modified parts of MS' have been changed in MI' and we want to generate
test sequences for the modified parts of the system specification, in order to

check that these modifications were implemented correctly in the modified
implementation MI'. In other words, for each unmodified transition
(sj-x/y->sk) of the MS', we assume that transition (hS-I(sj)-x/y->hS-I(sk)) has
not been changed in the modified implementation MI'. We note that in case
where new states are added (or deleted) to (or from) MS, we let S' denote the
set of states of MS' and T' denote the set of states of MI', respectively.

In general, we have the following types of modifications that can be
made in MS and implemented by a designer in MI:

(1) outputs of some transitions are modified, (2) tail states of some
transitions are modified, (3) outputs and tail states of some transitions are
modified, (4) new transitions are added (5) some transitions are deleted, (6)
new states are added, and (7) some states are deleted.

4.2 The Re-testing Methods

The re-testing methods adapted for the W, Wp, and HIS test derivation
methods have also two phases. In the first phase, re-tests are selected in
order to check (or re-identify) some states of the modified specification in
the new implementation, and in the second re-testing phase, re-tests are
selected to check each modified transition for correct output and tail state.
Here, we examine different cases that can be used to generate short re-testing
test sequences.

For convenience, hereafter, we use the input symbols a and b for
unmodified transitions, and x and z for modified ones.

4.3 Case-1: The Unmodified Part of the Modified
Specification is Reduced

Here we assume that the unmodified part UP-MS' of the modified
specification MS' is reduced. Then, there exist state identifiers W1,…, Wn,
which satisfy the following conditions: 1) each Wi is a subset of the defined
input sequences at state si∈S in the UP-MS', 2) given two states si, and sj,
i ≠ j, there exist sequences in Wi and Wj with the common prefix β such that
λS(si, β) ≠ λS(sj, β).

We note that since the unmodified part of the specification can be partial, a
characterization set W may not exist. However, we can always select state
identifiers with the above conditions.

4.3.1 General solution

For each modified edge (sj-x/y->sk), its corresponding re-testing test
cases are formed as follows:

If we use the HIS or Wp methods: r.αj.x.Wk, (1-a)
where Wk is a state identifier of state sk.
If a characterization set W exists and we use the W method: r.αj.x.W (1-b)

Theorem 1. Given a modified specification MS' and its implementation

MI', let the unmodified part of MS' be reduced and have state identifiers W1,
…, Wn. If implementation MI' passes the re-testing test suite which consists
of the union of the test cases over all modified transitions as given in
Formulae (1-a) or (1-b), then the implementation MI' is quasi-equivalent to
MS'.

We omit the proof of Theorem 1 since it is a particular case of Theorem 2.
We note that if the specification FSM is complete then the above case is a

particular case of the advanced procedure in [7] since each state identifier is
a so-called stable state identifier, i.e. is a state identifier of the corresponding
state in each potential implementation.

4.3.2 An Optimized Solution

We observe that a sequence that distinguishes two states of the initial
specification and traverses only unmodified transitions when applied at these
states, also distinguishes the corresponding states of the modified
implementation MI’. Moreover, when the unmodified part of the modified
specification is reduced, the mapping hS-I(s): S →T between the initial
specification and its conforming implementation is the only candidate that
can satisfy (X-1) for the modified specification and its implementation.
Therefore, we do not need to re-identify states of the modified
implementation. Moreover, the test suite constructed using the formulae of
the general solution may be shortened if we use, when checking certain
transitions, shorter state identifiers that pass through already tested
transitions rather than those generated only from the unmodified part of the
modified specification. In other words, instead of using state identifiers
derived in advance, we can generate shorter state identifiers, as modified
transitions are tested. For this purpose, we assume that a linear order “<”
over modified transitions of the specification is given. This order satisfies
the following property: If αr.z∈Q is a prefix of αj∈Q, then for any two
modified transitions (sr-z->sl) and (sj-x->sk), transition (sr-z->sl)<(sj-x->sk).
In this case, when checking a modified transition, we can use lower order
transitions (or already checked transitions) to generate shorter re-testing
sequences. The reason is that if the implementation at hand passes retesting
sequences for transition (sr-z/y->sl) then it has the corresponding transition
(hS-I(sr) -z/y-> hS-I(sl)), and this transition can be used for retesting a higher
order transition. In this section, we illustrate by an example the advantage of

using such a linear order. However, we do not discuss how to derive an order
that provides the shortest re-testing sequences.

For each modified edge (sj-x->sk), its corresponding re-testing test cases
are formed as in Formulae (1-a) or (1-b). However, as a state identifier of
state sk, we use state identifier Wk (or characterization set W in W method)
of the part of MS that comprises unmodified transitions or modified
transitions (sr-z->sl) where (sr-z->sl) < (sj-x->sk). In other words, for testing
transition (sj-x->sk) the state identifier Wk has sequences that if applied at
state sk only traverse unmodified transitions or modified transitions
(sr-z->sl) < (sj-x->sk). This allows, when checking a modified transition, the
use of already re-checked transitions (or lower order transitions) in order to
generate shorter state identifiers.

Theorem 2. Given a modified specification MS' and its implementation
MI', let the unmodified part of MS' be reduced, and for each modified
transition (sj-x->sk) Wk is a state identifier of state sk in the part of MS that
comprises unmodified transitions or modified transitions (sr-z->sl) < (sj-z-
>sk). If implementation MI' passes the re-testing test suite which consists of
the union of the test cases over all modified transitions as given in Formulae
(1-a) or (1-b), then the implementation is quasi-equivalent to MS'.

Proof. A proof of Theorem 2 is given in [2].
As an example for the general and optimized solution methods based on

the HIS method, we consider the modified specification FSM M1 shown in
Fig. 1. FSM M1 has the input set X={a, b, c}, output set Y ={y1, y2, y3}. The
labels of the modified transitions are shown in bold. The unmodified part of
FSM M1 has a separating family {w1, w2, w3, w4} of state identifiers, where
w1= {bb}, w2= {bb}, w3= {bb, c} and w4= {bb, c}. In fact, for each state si
of M1 we have the following input/output sequences in response to wi.

 s1 s2 s3 s4
b b y1 y2 y2 y2 y2 y1 y2 y1
c y2 y1

Table 1. Responses of M1 to state identifiers (if defined)

S 4

s 2
b /y 1

a /y 3 c / y 2s 1
s 3

c / y 2

b /y 2

a /y 1

a /y 4

b /y 2

a /y 2

c /y 1

c / y 1

b /y 2

c /e
s '1

c /e

a /e

b /e

c / f

s ' 2

s ' 4

s ' 3b / e

a / f

c /e b / f

b / f a /e

a / f

Figure 1. Specification M1 Fig. 2. Specification MS'

None of the above state identifiers passes through a modified transition if
applied at an appropriate state, and thus, the unmodified part of MS' is

reduced. According to the general solution, in order to re-test the modified
transitions, the following re-testing sequences of length 24 are generated
using Formula (1-a): {r.α1.a.w2+r.α2.c.w4+r.α4.a.w3} = {r.ε.a.bb, r.b.c.bb,
r.b.c.c, r.ba.a.bb, r.ba.a.c}, where α1= ε, α2= b and α4= ba are the
corresponding sequences of the state cover set .

We now use the following linear order over modified transitions
(s1-a->s2) < (s4 a->s3) < (s2-c->s4). In order to re-test the modified
transition (s1-a-> s2), the re-testing test sequence {r.a.w2=r.a.bb} is used. If
the implementation at hand passes this sequence, then we have the following
responses to the input a :

 At state hS-I(s1): y3, at state hS-I(s2): y1, and at state hS-I(s3): y2,
Consequently, in order to re-test transition (s4-a->s3), the re-testing test

sequence r.α4.a.a = r.b.a.a.a will be enough instead of r.α4.a.w3, since r.α4
reaches state s4 through unmodified transitions and if afterwards, the
modified implementation produces the expected output y4 to the input
symbol a, then a becomes a distinguishing sequence for the part of the
specification comprising unmodified transitions and transitions (s1-a->s2)
and (s4-a->s3), where for the last transition only its output has been checked;
therefore, a is a distinguishing sequence for the corresponding part of the
modified implementation.

Afterwards, in order to check the ending state s4 of the modified
transition (s2-c->s4), the distinguishing sequence a can be used instead of
the previous state identifier w4= {bb, c}. Hence, the re-testing test sequence
of this transition is r.α2.c.a = r.b.c.a. Therefore, according to the optimized
solution method, in order to re-test the modified transitions, the following re-
testing sequences are generated using the above linear order and Formulae
(1-a): {r.a.bb + r.b.a.a.a + r.b.c.a}.

The total length of these sequences is 13, where the total length of those
generated using Formula (1-a) of the general solution method is 24. The HIS
method generates a test suite of length 51 if the whole specification of MS' is
considered for test derivation.

4.4 Case-2: Each State of the Modified Specification is
Reachable Through Unmodified Transitions and the
Unmodified Part is Not Reduced.

In some cases, the unmodified part of the modified specification MS' is
not reduced. However, each state of MS' is reachable through some
unmodified transitions. Since each state of MS' can be reached through
unmodified transitions, the only possible correct mapping between the states
of MS' and MI' is the old mapping established between the states of MS and
MI. Therefore, in order to check that this mapping still holds for the states of

the modified specification and implementation the only states that have state
identifiers passing through modified transitions have to be re-identified in
the new implementation. Moreover, in order to re-identify such a state, it is
enough to apply only the sequences of the corresponding state identifier that
pass through modified transitions.

Let Q be a prefix-closed state cover set such that its sequences do not
traverse modified transitions if applied at the initial state of MS'. Let also F =
{W1, …, Wn} be a separating family of the modified specification, and W
be a characterization set (if exists).

i) State re-identification phase
For each state sr such that some sequences of Wr traverse modified

transitions if applied at sr the state re-identification sequences are formed as
follows:

 r.αr .Wr’ (2-1a)
where Wr’⊆Wr (or Wr’⊆W for the W and Wp methods) comprises each
sequence of the state identifier Wr (of the characterization set W) that, if
applied at state sr of the modified specification, traverses a modified
transition. We note that each state of MS' for which all sequences of the state
identifier traverse only unmodified transitions, does not need to be re-
identified.

ii) Re-testing modified transitions phase
For each modified edge (sj-x->sk), its corresponding re-testing test

sequences are formed as shown in Formulae (1-a) and (1-b).
Theorem 3. Given the modified specification MS' and its implementation

MI', let F = {W1, …, Wn} be a separating family of MS' and W be a
characterization set of MS' (if exists). Let also Q be a prefix-closed state
cover set of MS' such that each sequence of the set Q does not traverse a
modified transition if applied at the initial state. If implementation MI'
passes the re-testing test suite which is the union of the re-testing test
sequences given in Formula (2-1a) and Formulae (1-a) or (1-b), then the
implementation is quasi-equivalent to MS'.

We omit the proof of Theorem 3 since it is a particular case of Theorem 4.
We note that union of the test cases given in Formula (2-1a) and Formula

(1-a) coincides with the test suite returned by procedures in [7], [5], since
both methods return a test suite without input sequences that traverse only
unmodified transitions. However, here we underline the advantage of
selecting a state cover set and state identifiers with sequences that do not
traverse any modified transition. In this case, the old image of a
corresponding state of a modified specification must be preserved and
therefore, there is no need to check unmodified transitions at the
corresponding state.

4.5 Case-3: Some States are only Reachable Through

Modified Transitions

In some cases, the unmodified part of the modified specification MS' is
not reduced and some states of MS' are only reachable through modified
transitions. This case always holds when additional states are introduced
when modifying the specification. Here, for the subset of states, say Sr-m of
the modified specification that are only reachable through modified
transitions, the old conforming mapping might not be preserved between the
new specification and its implementation, i.e. some sk ∈ Sr-m of the
modified specification might be mapped to a new state of its implementation
(say tl ∈ Tr-m), different from tk. Each such state must be re-identified in the
new implementation and moreover, differently from former two cases, we
have to check unmodified transitions from this state.

As an example, we modify the specification MS shown in the upper part
of Fig. 3 and obtain the FSM MS' shown in the upper of Fig. 4. The modified
transitions are shown as bold lines. We note that the mapping between states
of MS and its conforming implementation MI, shown in the lower part of
Fig. 3, is hS-I(sk) = tk for k= 1,...,4. Moreover, we let MI', shown in the
lower part of Fig. 4, be the implementation of MS'. MS' has W = {aa} as a
characterization set which is a state identifier of each state. In fact, we have
the following output responses to aa. For state s1, xx. For state s2, xy. For
state s3, yy, and for state s4, yx.

s 4s 2

a / xs 1

s 3
b / y a / y

b / x

b / x

b / x

a / x

a / y

m a p p i n g

m a p p i n g

m a p p i n g

m a p p i n g

t 4t 2

a / xt 1

t 3

b / y

a / y

b / x

b / x

b / x

a / x

a / y

s 4s 2

a / xs 1
s 3

b / y a / y

b / x

b / x

b / x
a / x

a / y

t 4t 2

a / xt 1
t 3

b / y

a / y

b / x

b / x

b / x
a / y

a / x

m a p p i n g

m a p p i n g

m a p p i n g
m a p p i n g

Figure 3. MS and MI Figure 4. MS' and MI'

We note that the modified implementation state t4 of MI' has the output
response yy to aa, i.e. state s3 of MS' is W-equivalent to t4 of MI' while state
s4 of MI' is W-equivalent to t3 of MI'. States t1 and t2 of MI' are W-
equivalent to s1 and s2 of MI'. The mapping is preserved for the modified
transitions from states t3 and t4 under input a. However, it is not preserved
for the unmodified transitions at states s3 of MS' and s4 of MS' under input b,
i.e. MI' is a wrong implementation of MS'. Therefore, appropriate
unmodified transitions also need to be checked in order to kill such a wrong
mapping.

As in the previous section, we select a prefix-closed state cover set with
the following property. Given state sj∈S of MS' reachable through
unmodified transitions, we select the sequence αj∈Q that does not traverse
any modified transition.

The re-testing method has two phases. In the first phase, some states of
the modified specification are re-identified in the new implementation. It
may occur that for some states of the modified specification that are only
reachable through modified transitions their old image must still be
preserved in the new implementation. In particular, those are the states that
have a so-called stable identifier [7] that distinguishes a state from any other
state in each possible implementation. For each such state, we derive a state
identifier (if it exists) that kills, through the re-identification phase,
implementations where the state has a new image. We start from the set of
states that are reachable through unmodified transitions. As in Case-2, the
old mapping must still be valid for these states and only modified transitions
from these states need to be checked. Moreover, given such a state, if the
sequences of its state identifier do not traverse modified transitions then the
state does not need to be re-identified. Otherwise, we select state re-
identification sequences using Formula (2-1a) of Case-2, where in order to
check the new mapping of a state, say sj, we concatenate the sequence r.αj
with each sequence of the state identifier of the sj that passes through a
modified transition. Then, we iteratively identify all other states for which
the old mapping must be preserved; however, their state identifiers are
derived in a proper way as described below. Afterwards, since each
remaining state, say sj∈Sr-m, of the modified specification could have a new
image, i.e. sj could be mapped to say tk∈Tr-m instead of the old image
hS-I(sj) = tj, re-tests are selected to re-identify the image of sj in the new
implementation, i.e. check (or establish) that sj is W-equivalent to tk, and to
check that this mapping is conforming. In order to re-identify sj, re-tests are
selected by concatenating r.αj with each sequence in the state identifier of
state sj including sequences which traverse only unmodified transitions
Moreover, in order to check that this mapping is a valid one (i.e. kill wrong
mappings), re-tests are selected to check each outgoing transition from sj for
correct output and ending state in the new implementation.

In order to implement the above steps, we determine a subset Su of the set
of states of the modified specification such that for the states in Su the old
mapping between the states of the modified specification and its conforming
modified implementation must still be preserved. The set Su enjoys a nice
property. For each state in Su, we do not need to check its outgoing
unmodified transitions. In the following paragraph, we determine which
states may be in the set Su and derive the set Su together with a separating
family F={W1, …, Wn} (or characterization set W) so that if the

implementation passes the re-identification test sequences, then there exists
one-to-one mapping h: S → T such that the following property holds.

For each state si∈Su we have: si ≅wi t ⇔ t = hS-I(si). (X-2)
First, we add to the empty set Su each state sj that is reachable from the

initial state through unmodified transitions. As in Case-2, the images of these
states have to be still preserved in the new implementation. Then, for state sj
and each state si ∈ S, si≠ sj, we include in the state identifiers Wj and Wi a
sequence that distinguishes the states sj and si in the modified specification.
We note that, as discussed for Case-2, we recommend, while building the
state identifier Wj, to select the sequences that do not pass through modified
transitions if applied at state sj, since we do not need to apply these
sequences while re-identifying sj.

Afterwards, we iteratively include in Su each state sj ∈ S\Su, such that for
each state si ∈ S\Su, si ≠ sj, there exists sequence βij that does not traverse
modified transitions if applied at states si and sj and λS(si, βij) ≠ λS(sj, βij),
or there exists input x such that transitions (sj-x->sk) and (si-x->sr) are
unmodified, sk ≠ sr and sk, sr ∈ Su. In the former case, we include sequence
βij in Wi and Wj. Since βij does not traverse modified transitions if applied
at states si and sj we have that ΛI(hS-I(si), βij) = λS(si, βij), and λS(sj, βij) ≠
ΛI(hS-I(si), βij). Thus, if βij is included into Wi and Wj and the
implementation passes the corresponding state re-identification sequences,
then sj is not W-equivalent to hS-I(si) (i.e hS-I(sj) ≠ hS-I(si)). In the latter
case, we include into Wi and Wj the sequence xβ where β is a common
prefix of the appropriate sequences in Wi and Wj such that λS(sk, β) ≠
λS(sr, β). Thus if ΛI(hS-I(si), x.β)=λS(si, x.β), then λS(sj, x.β) ≠ ΛI(hS-I(si),
x.β). If x.β is included in Wi and Wj and the implementation passes the
corresponding state re-identification sequences, then sj is not W-equivalent
to hS-I(si). Due to the definition of state identifiers for states in Su, such a
sequence exists. If any sequence of each state identifier is defined at each
state then we derive the set W as the union of all state identifiers. We note
that in order to kill for sj any mapping hI where hI(sj) ≠ hS-I(sj), the
corresponding state re-identification sequences are derived by concatenating
r.αj with every sequence of the set Wj (or W for the Wp and W methods).

Finally, we derive state identifiers for the remaining states in S\Su. For
each state sj in S\Su and for each state si ∈ S, si ≠ sj, we include a sequence
βij in Wi and Wj (if it does not already exist) such that λS(si, βij) ≠ λS(sj,
βij). In order to re-identify sj in the new implementation and kill its possible
wrong images, the corresponding re-testing sequences include all re-
identification sequences and re-testing sequences for testing all outgoing
transitions from state sj.

The characterization set W (for the W, and Wp methods) can be obtained
as the union of state identifiers Wi, i=1, …, n (if possible). We note that in

order to reduce the number of transitions which need to be checked we use
another technique than that based on stable state identifiers [7]. The main
idea behind our approach is based on the observation that for each state
reachable through unmodified transitions and some other states, the old
image must be preserved in each conforming modified implementation. Our
technique can also be used to reduce a test suite derived from a mutation
machine [5] if the latter has many deterministic transitions.

i) Phase of state re-identification
For each state sj of the modified specification that needs to be re-

identified in the new implementation, we derive its state re-identification test
sequences as follows:

If αj does not traverse a modified transition, the re-identification
sequences are formed as in Formula (2-1a).

If αj traverses a modified transition then there are test sequences
r.αj.Wj (HIS method); (3-1a)
r.αj.W (W and Wp methods). (3-1b)

Every sequence of the set Wj (or W) must be applied after αj,
whether the sequence applied at state sj traverses a modified transition
or not.

ii) Phase of re-testing modified transitions
For each modified edge (sj-x->sk), where sj ∈ Su, its corresponding test

cases are formed as in Formulae (1-a) or (1-b). For each state sj ∉ Su,
Formula (1-a) or (1-b) are applied for each outgoing transition from state sj
including those which are unmodified.

Theorem 4. Given the modified specification MS' and implementation
MI', let Q be a prefix-closed state cover set of MS' and F = {W1, …, Wn}
and W be a separating family and a characterization set (if exists) of the
modified specification MS' derived as described above. If implementation
MI' passes the re-testing test suite derived for Case-3, then the
implementation is quasi-equivalent to MS'.

Proof. As we demonstrated by the example, in Case 3, a one-to-one
mapping h: S → T such that state si of MS' is Wi-equivalent to state h(si) of
MI' can be different from hS-I. We first need to check whether the one-to-
one mapping h exists at all.

We consider a relation h∈S×T such that: (sj, tj)∈h ⇔ sj ≅ Wj tj. If the
implementation passes the re-identification test cases given by Formulae
(2-1a), (3-1a) and (3-1b) then h is a one-to-one mapping h: S → T. We next
show that h(sj) = hS-I(sj) holds for each sj∈ Su.

Given state sj∈S of MS' such that the sequence αj∈Q does not traverse
modified transitions, if MI' passes the test sequences given in Formulae (3-
1a) then the state hS-I(sj) = h(sj). The initial state s1 is in the set Su, i.e. the
base of induction holds.

Let us assume that h(s) = hS-I(s) holds for each state s of a current set Su
and that state sj is the next state we are going to include into Su using the
procedure described above. Since h is a one-to-one mapping, for each state
s∈ Su it holds that h(sj) ≠ hS-I(s). On the other hand, for each state si ∈ S\ Su,
i≠j, by construction of the state identifier, ∃ a sequence βij∈Wj∩Wi such that
βij does not traverse modified transitions if applied at states si or sj and
λS(si, βij) ≠ λS(sj, βij), or ∃ a sequence xβ∈Wj∩Wi such that the final
states of unmodified transitions (s-x->sk) and (si-x->sr) are different and
λS(sk, β) ≠ λS (sr, β). In the former case, MI' has different output responses
to the sequence βij∈Wj∩Wi at the states h(sj) and hS-I(si), i.e. h(sj) ≠ hS-I(si).
In the latter case, MI' at states hS-I(sk) and hS-I(sr) has different output
responses to the sequence β∈Wk∩Wr, i.e. MI' has different output responses
to the sequence xβ∈Wk∩Wr at the states h(sj) and hS-I(si), i.e. h(sj) ≠hS-I(si).
Therefore, by induction, h(sj) = hS-I(sj) for each state sj∈Su.

For each unmodified transition (sj-a ->sl) from state sj∈Su it holds that
λS(sj, a)=ΛI(hS-I(sj)) and hS-I(sl)=∆(hS-I(sj), a).

If MI' passes the test cases r.αj.x.Wk for a modified transition (sj-x ->sk)
then λS(sj, x)=ΛI(hS-I(sj), x) and the ending state of the transition (hS-I(sj)-x
->tk) is Wk-equivalent to sk.

Due to the construction of retesting sequences, we also check that (X-1)
holds for each transition from each state sj∉Su. Thus, if MI' passes the test,
then the mapping h satisfies (X-1), i.e. MI' is quasi-equivalent to MS' �

As an application example for Case-3 with the HIS method, we add to the
given specification a new state s'4 and its corresponding incoming and
outgoing edges producing the modified specification MS' shown in Fig. 2.

The state cover set of MS' is Q'={ε, b, c, bc}. We consider each incoming
and outgoing transition of the added state (here s'4) as a modified transition.
Therefore, the modified transitions of MS' are (s'2-c/f->s'4), (s'4-b/f->s'4),
(s'4-a/e->s'4), and (s'4-c/f->s'3).

According to Case-3, we add to the set Su states s'1, s'2, and s'3 since
these states are reachable through unmodified transitions and there exists a
state identifier for each of these states that does not pass through modified
transitions. In this example, the sequence bb is such an identifier. In fact, we
have the following input/output sequences in response to bb. For state s'1, ff.
For state s'2, fe. For state s'3, ef, and for state s'4, ee.

These states, i.e., s'1, s'2, and s'3 , do not need to be re-identified in the
new implementation. In order to re-identify the added state s'4, the re-test
sequence r.α4.W4 = r.bc.bb is selected using Formula (3-1a). If the modified
implementation passes this sequence then there is a one-to-one mapping
between states of the modified specification and implementation that are bb-
equivalent.

Afterwards, in order to test the modified transition (s'2-c/f->s'4) whose
head state s'2 is in Su, the sequence r.α2.c.W4 = r.b.c.bb is selected using
Formula (1-a). Moreover, the following re-testing test sequences are selected
using Formula (3-1c) in order to check the outgoing transitions from state
s'4∈S\Su: r.α4.a.W4+r.α4.b.W4+r.α4.c.W3 = r.bc.a.bb+r.bc.b.bb+r.bc.c.bb

Consequently, the re-testing test suite has sequences of total length 18.
The traditional HIS method derives a test suite of length 32 if the whole
specification of MS' is considered for test derivation.

5. FURTHER RESEARCH WORK

We have extended the re-testing methods presented in this paper for the
case when the system implementation may have more states than its
specification. Moreover, we are adapting these methods for a system
modeled as an Extended Finite State Machine (EFSM). The problem here is
to find an appropriate way for re-testing both the control flow and the data
flow parts of a modified EFSM. Finally, we are investigating how the re-
testing methods can be applied to a labeled transition system (LTS).

REFERENCES

[1] T. S. Chow, ‘Test design modeled by finite-state machines’. IEEE Trans. SE-4, No.3,
pp. 178-187, 1978.

[2] K. El-Fakih, N, Yevtushenko, and G. v. Bochmann, ‘Re-testing Based on Finite State
Model’, Technical Report, University of Ottawa, 2001.

[3] S. Fujiwara, G. v. Bochmann, F. Khendek, M. Amalou, and A. Ghedamsi, ‘Test
selection based on finite state models’, IEEE Trans. SE-17, No. 6, 591-603, 1991.

[4] A. Gill, Introduction to the Theory of Finite-State Machines. McGraw-Hill, 1962.
[5] I.Koufareva, A.Petrenko, N.Yevtushenko. Test generation driven by user-defined fault

models. In Proc. of the IFIP TC6 12th International Workshop on Testing of
Communicating Systems, Hungary, pp. 215-233, 1999.

[6] A. Petrenko, Checking experiments with protocol machines, Proceedings of the IFIP
Fourth International Workshop on Protocol Test Systems, the Netherlands, 1991, pp.
83-94.

[7] A. Petrenko and N. Yevtushenko,‘Test suite generation for a FSM with a given type of
implementation errors’, Proc. of the 12th IWPSTV, pp. 229-243, 1992.

[8] A. Petrenko, N. Yevtushenko, A. Lebedev, and A. Das, ‘Nondeterministic state
machines in protocol conformance testing’, In Proc. of the IFIP Sixth International
Workshop on Protocol Test Systems, France, pp. 363-378, 1993.

[9] K. Sabnani and A. Dahbura,‘A protocol test generation procedure’. Computer
Networks and ISDN Systems, Vol. 15, No. 4, 285-297, 1988.

[10] S. Schach, Software Engineering, Boston:Aksen Assoc., 1992.
[11] M. Yannakakis and D. Lee, ‘Testing finite state machines: fault detection’, Journal of

Computer and System Sciences, 50, 1995, pp. 209-227, 1995.

	INTRODUCTION
	FINITE STATE MACHINES
	REVIEW OF THE W, WP, AND HIS METHODS
	FSM BASED RE-TESTING
	Problem Definition
	The Re-testing Methods
	Case-1: The Unmodified Part of the Modified Specification is Reduced
	General solution
	An Optimized Solution

	Case-2: Each State of the Modified Specification is Reachable Through Unmodified Transitions and the Unmodified Part is Not Reduced.
	Case-3: Some States are only Reachable Through Modified Transitions

	FURTHER RESEARCH WORK
	REFERENCES

